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Abstract

Initiation of longitudinal roll cell convection in a fully developed, steadily cooled ¯owing layer has been
investigated. The upper free surface is subject to convective cooling and the rigid bottom is insulated. The critical
Rayleigh number and the associated wavenumber are obtained as functions of the Prandtl number, the

dimensionless mass ¯ow rate of main ¯ow and the Biot number at the upper surface. Linear stability theory is not
valid in this case. The SIMPLER algorithm with periodic boundary condition is used to directly simulate the ¯ow
®eld numerically in an unsteady manner. In the region of steady bifurcation, the critical Rayleigh number is

signi®cantly greater than the results using the linear stability theory. However, when the Prandtl number is greater
than 10, the linear stability theory is asymptotically valid, and the critical Rayleigh number and the associated
wavenumber are very close to the results from the linear stability theory. Oscillatory motion, or Hopf bifurcation,

occurs when the Prandtl number is less than 0.1. 7 2000 Published by Elsevier Science Ltd.

1. Introduction

Product quality of glass, steel and many other indus-
trial materials is signi®cantly a�ected by melting, re-

®ning and forming processes. Raw molten material

undergoes cooling and heating during these processes.

Thermal instability often arises when the bottom is
warmer than the upper surface. It appears when the

temperature di�erence between upper and bottom

layers is greater than a certain critical value and/or the
¯uid layer is su�ciently deep. When it occurs, the ¯ow

pattern and the thermal behavior are signi®cantly

altered, which may eventually change the product

quality beyond control. It is thus very important to
®nd the stability limits in those processes.
This paper examines the stability of a steadily cooled

¯owing layer. Fig. 1 shows the schematic of the pro-
blem. This type of ¯ow is frequently found in the fore-
hearth of glass production lines, and in the continuous
casting of steel. The temperatures of ¯uid layer and en-

vironment constantly decrease along the main ¯ow
direction. The upper boundary is free and the lower
boundary is rigid. The ¯uid layer is cooled by environ-

mental convection at the upper surface and insulated
at the lower surface. This unstable temperature pro®le
may alter the ¯ow pattern completely. However, as

long as the instability is suppressed, the fully developed
velocity pro®le is maintained as ws, as shown in Fig. 1.
The steady temperature pro®le is also depicted as Ts.

When the instability takes places, convective roll cells
of certain pattern appear in the layer. The stability
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limit is dependent on the pattern of roll cells. The pat-
tern which initiates at the lowest Rayleigh number is

not completely known yet. de Graaf et al. [1], though,
®nd the occurrence of the roll cells whose axes are par-
allel to the main ¯ow direction in the experiment of
natural convection of inclined channel. Such roll cells

are shown in Fig. 1. Since this pattern is shown to

occur in that similar case, we limit ourselves to this
roll cell pattern in this paper and scrutinize the stab-

ility limit.
Many researchers have reported about the instability

of natural convection. A con®ned ¯uid layer heated
from below has been studied by Pellew and Southwell

[2] analytically. Sparrow et al. [3] study a similar pro-

Nomenclature

a the wavenumber, = 2pH/L
Bi the Biot number, = hH/k
C steady cooling speed (K/m)

g gravitational acceleration (9.81 m/s2)
H depth of the ¯uid layer
h heat transfer coe�cient

k thermal conductivity
L spanwise period length
M dimensionless mass ¯ow rate, = _m=r0a
m
.

mass ¯ow rate per unit depth (kg/s m)
Pr the Prandtl number, = n=a
p pressure
Ra the Rayleigh number, = gbCH 4=an
Ram the modi®ed Rayleigh number, =Ra(ybÿyu)
T temperature
t time

u x-direction velocity
v y-direction velocity
w z-direction velocity

x, z horizontal coordinates
y vertical coordinate

Greek symbols
a thermal di�usivity
b volumetric thermal expansion coe�cient

f general dependent variable
j inclination angle of the bed
n kinematic viscosity

y dimensionless temperature, =T1/CH
r density

Subscripts
b bottom surface
cr critical value
new present iteration value

0 reference
old previous iteration value
r real

s initial state
u upper surface
1 surrounding

Superscripts
' perturbed quantity
� dimensionless quantity

Fig. 1. Schematic of the steadily cooled ¯owing layer.
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blem heated by uniform heat source. The e�ect of
radiative heating is also investigated by Yang [4]. Mae-

kawa and Abe [5] report the e�ect of electric ®eld on
the initiation of natural convection in a con®ned ¯uid
layer, while Pearson [6] investigates the e�ect of sur-

face tension in the same problem. All these researches
are suited to analytical approach since their problems
allow the application of linear stability theory [2].

When this theory does not hold, as is frequent in the
case of low Prandtl number ¯ow, the conservation
equations of mass, momentum and energy need be

solved directly in an unsteady manner to allow steady
oscillatory ¯ow as well as the exponential instability
growth. Chao et al. [7] report the dependence of the
¯ow instability on the Prandtl number. Their results

show that the linear stability theory is not valid for
low Prandtl number ¯ows. Lee et al. [8] report linear-
ized stability of ¯uid ¯owing over a heated plate. Song

[9], on the other hand, reports his results of the current
problem applying the method of Pellew and Southwell
[2]. Song's results are based on the linear stability the-

ory and need be examined carefully since it is known
to be applicable for high Prandtl number ¯uids only
[7].

This study employs a numerical simulation.
Unsteady, three-dimensional momentum and energy
equations are reduced to two-dimensional equations
after some modi®cations. And, these equations are

solved as a substitution for the linear stability theory.
Periodic boundary conditions are used to describe the
roll cell motion. The analysis is made using a SIM-

PLER-based code. The onset of roll cell is summarized
through the critical Rayleigh number and the associ-
ated wavenumber. The results are compared with

Song's linear results [9].

2. Problem de®nition, formulation and numerical scheme

In the present problem, the ¯ow is assumed to be
incompressible and the ¯uid properties are assumed to
be constant. The continuity, momentum and energy

equations are written as follows:
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In Eq. (4), the e�ect of slight inclination angle j of

the bed is included. However, the angle is so small that
cos j is virtually unity as has been implicitly taken in
Eq. (3). The lower and upper boundary conditions are
given as follows:

u � 0, v � 0, w � 0,
@T

@y
� 0

at the lower surface:

�6�

@u

@y
� 0, v � 0,

@w

@y
� 0, ÿ k

@T

@y
� h�Tÿ T1�

at the upper surface,

�7�

where T1 is the surrounding temperature. We assume
that the temperatures of the ¯uid layer and surround-

ing gas above the upper surface decrease at a constant
rate along the z-axis so that,

T�x, y, z� � T1�x, y� ÿ Cz� T0, �8�

where C is the temperature gradient along the z-axis.

Note that T1 also decreases with gradient C. The
reference temperature T0 may be taken arbitrarily. We
choose T0 as T1 at z � 0 to simplify the equations to

follow.
The Boussinesq approximation is applied, i.e., den-

sity is assumed to be constant except in the buoyancy

term in the vertical direction. The density is linearized
using a reference temperature T0,

r � r0
�
1ÿ b�Tÿ T0 �

�
: �9�

Then the real pressure pr is expressed as
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pr�x, y, z� � p�x, y� � p1 �
�H
y

r0g�1� bCz� dy, �10�

where p1 is the environmental pressure (constant), r0
is a reference density of the ¯uid and H is the vertical
depth. Note that pr increases along the z-axis since the

density increases by lowered temperature.
Velocities u, v are initially zero in Eq. (4) so that for

ws,

0 � ÿ 1

r0

@pr

@z
� n

@ 2ws

@y 2
� g sin j: �11�

As ws is fully developed, it is independent of x and
z. Then H is not changed along the z-axis. The press-
ure gradient along the z-axis can be obtained by

directly di�erentiating the real pressure,

ÿ@pr

@z
� ÿr0gbC�Hÿ y�: �12�

Introducing this expression in Eq. (11),

n
@ 2ws

@y 2
� gbC�Hÿ y� ÿ g sin j: �13�

The ws-velocity ®eld is obtained by integrating Eq.

(13) and de®ning mass ¯ow rate per unit spanwise
depth as _m��H0 r0ws dy,

ws � gbCH 3
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Comparing Eqs. (11) and (14), the pressure gradient
can be replaced as,

ÿ 1
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The pressure gradients along the x- and y-axis can
be obtained by directly di�erentiating the real pressure.

Therefore, using Eqs. (8) and (9),
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We further assume that this expression of w-momen-
tum driving forces is not changed at the early stage of
instability occurrence. It means that w � ws, w� u

and w� v so that Eq. (4) can be linearized without
losing accuracy. We substitute Eqs. (8), (15) and (16)
into Eqs. (1)±(5). They are nondimensionalized as fol-

lows:
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Note that the z-axis is eliminated for this roll cell

pattern. The dimensionless quantities are de®ned as:

t� � t

H 2=a
, x� � x

H
, y� � y

H
,

p� � p

r0a 2=H 2
, u� � u

a=H
, v� � v

a=H
,

w� � w

a=H
, y � T1

CH
, Pr � n

a
,

Ra � gbCH 4

an
and M � _m

r0a
:

�22�

The initial conditions of velocities are given as the
steady ¯ow:

u�s � 0, v�s � 0, w�s � Ra

�
ÿ 1

6
y�3 � 5

16
y�2 ÿ 1

8
y�
�

�M

�
ÿ 3

2
y�2 � 3y�

�
: �23�

The thermal initial condition is obtained from Eqs.
(21) and (23),
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ys � Ra
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where the Biot number is de®ned as Bi = hH/k. In
Eqs. (23) and (24), the ®rst terms on the right-hand

side represent the e�ect of adverse pressure gradient
due to cooling while the other terms show the e�ect of
steady through-¯ow.
The lower and upper boundary conditions are given

as follows:

u� � 0, v� � 0, w� � 0,
@y
@y�
� 0

at the lower surface:

�25�

@u�

@y�
� 0, v� � 0,

@w�

@y�
� 0,

@y
@y�
� ÿBiy

at the upper surface:

�26�

Periodic boundary conditions are used at the span-
wise boundaries (i.e., at x� = 0 and L�). The ¯ow con-
®guration given in Fig. 1 illustrates the periodic
motion well, i.e., the velocity and temperature ®elds

repeat itself spanwise over every period length L�.
Consequently, the velocity components, pressure and
temperature exhibit a periodic behavior [10]:

f
ÿ
x �, y�

� � f
ÿ
x � � L�, y�

� � f
ÿ
x � � 2L�, y�

�
� � � � , �27�

where f represents any dimensionless dependent vari-
able and L� is a dimensionless period length L/H. The

wavenumber a is de®ned as a � 2pH=L:
The governing equations are solved in primitive vari-

ables in two-dimensional staggered grid based on the

control volume method [11]. A uniform grid (40 � 20)
is taken after some veri®cation to be shown later. The
QUICK scheme [12] is used in the ®nite di�erence for-

mulation of the convective terms to minimize the nu-
merical di�usion. The SIMPLER algorithm [11] is
employed to solve the coupled heat transfer and ¯uid
¯ow. The cyclic tridiagonal matrix algorithm [13] is

adopted in x-direction to handle the periodic boundary
conditions. The governing equations are solved itera-
tively at each time step until the solutions are con-

verged. Unsteady scheme is made on a fully implicit
method. The steady solution is introduced as the initial
condition. No arti®cial perturbation is needed since the

small round-o� errors naturally function as disturb-
ances. The employed dimensionless time steps are pro-
portional to �Dx �� 2=Pr; they are of the order of 10ÿ2,

10ÿ3 and 10ÿ4 corresponding to the Prandtl number
0.1, 1 and 10, respectively. The error associated with

the time step is made minimal by con®rming that even
®ner time step does not signi®cantly change the nu-
merical results. At each time step, it is necessary to

ensure the convergence. The temperature and w�-vel-
ocity convergence criteria are taken as follows:

max

����ynew ÿ yold

ynew

���� < 1:0� 10ÿ6,

max

����w�new ÿ w�old

w�new

���� < 1:0� 10ÿ6, �28�

where subscripts `new' and `old' denote the present
and the previous iteration values, respectively. The

maximum dimensionless mass imbalance over a control
volume is also checked. When converged, the value is
maintained to be less than 10ÿ6.
When the upper surface is steadily cooled, the high-

est temperature appears at the bottom and the lowest
temperature appears at the upper surface. Therefore,

the Rayleigh number is considered to be better
expressed using the modi®ed Rayleigh number Ram,

Ram � Ra�yb ÿ yu �, �29�

where yb and yu denote the values of ys at the lower
and the upper surfaces, respectively. Note that Ram is
nothing but the most conventional de®nition of Ray-

leigh number with ¯ow depth and the temperature
di�erence between the upper and the lower surfaces.
By examining the ¯ow ®eld at a modi®ed Rayleigh

number and a wavenumber, we check if a roll cell has
taken place or not. The parameters are the Prandtl
number, the dimensionless mass ¯ow rate M and the
Biot number. The critical Rayleigh number Racr is the

smallest modi®ed Rayleigh number at which the roll
cells ®rst appear. Variables u�, v�, w� ÿ ws

� and yÿ ys

increase with time when the roll cells occur �Ram >
Racr� while in the other cases �Ram < Racr), they
decrease to zero. At Ram � Racr, these variables
remain constant. The critical Rayleigh number is

obtained by further varying the wavenumber. The low-
est modi®ed Rayleigh number and the associated
wavenumber are called the critical Rayleigh number
�Racr� and the critical wavenumber �acr), respectively.

We next check the numerical errors. Grid depen-
dence is ®rst examined. The well-known problem of
Benard convection with upper free and lower rigid

boundaries is used to examine the grid dependence.
The calculated results using reduced grids are com-
pared with those using a 100 � 50 mesh. After some

trials, errors of u�, v� and y using 40 � 20 mesh are
found to be less than 1.5%. Compromising between
the computational cost and the accuracy, the 40 � 20
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mesh is considered to be appropriate. To further verify
the grid, the obtained critical Rayleigh number and the

wavenumber are compared with the exact values by
Drazin [14]. The exact Racr (=1101) and acr (=2.682)
are reproduced almost perfectly by the current numeri-

cal scheme. The relative errors of the critical Rayleigh
number and the wavenumber are usually less than 1%.

Thus, the errors of Racr and acr hereafter are estimated
to be less than 1%.
In the actual computations, the CRAY Y-MP C916/

Fig. 2. Initial condition for various Ra/M: (a) w �-velocity, (b) temperature.
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16512 supercomputer has been used. The computation
time depends on the Prandtl number, the dimensionless

mass ¯ow rate and the Biot number. This time is
about 5900 s for a typical set of these three par-
ameters.

The e�ects of the Prandtl number, the dimensionless
mass ¯ow rate and the Biot number are investigated in
depth in this study. Fig. 2(a) shows the initial w�-vel-
ocity distribution, and Fig. 2(b) shows the initial tem-

perature distribution. From Fig. 2(a), back ¯ow occurs
in the lower part in some cases. It happens when the

adverse pressure gradient associated with Ra in Eq.
(23) is signi®cantly large compared with the through-
¯ow associated with M. When it happens, material at

the end of production line returns along the back ¯ow.
This is certainly an abnormal situation induced by an
excessive cooling. To avoid the back ¯ow, the ws

�-vel-
ocity gradient at lower surface (see Eq. (23)) must be

Fig. 3. Initial condition for Ram = 2000: (a) w �-velocity, (b) temperature.
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greater than 0. This condition is met when

Ra

M
< 24: �30�

When Ra/M is greater than 24, roll cells in the yz-
plane occur at the steady state and the maximum in-
itial temperature appears either at the upper surface or

in the ¯uid layer. When it is less than 24, roll cells in
the xy-plane may occur and the maximum initial tem-
perature appears at the bottom. As mentioned earlier,

we limit ourselves to the roll cells in xy-plane. It is
found from Fig. 2 that the ¯ow ®eld and the tempera-
ture distribution do not vary signi®cantly with change
of Ra/M when the above condition is met, i.e., when

the e�ect of through-¯ow is dominant. It can also be
found from Eq. (24) that,

yb ÿ yu � 3

8
M

�
1ÿ Ra

120M

�
: �31�

This is approximately 3M/8 when Ra/M<24. Intro-
ducing Eq. (31) into Eq. (30), we ®nd

Ram

M 2
< 7:2: �32�

To investigate the e�ect of mass ¯ow rate, we vary
M to 20, 30 and 100. Fig. 3(a) and (b) show the initial

w�-velocity and initial temperature distribution, re-
spectively. The temperature gradient at the bottom is
zero and the highest temperature appears there and the

lowest temperature appears at the upper surface. The
e�ect of through-¯ow is considered to be more import-
ant than the e�ect of adverse pressure gradient due to

cooling as M is large. At the limiting case (M = 1),
the e�ect of through-¯ow is most dominant. The
results for M = 100 are expected to be almost similar

to this limiting case. The Prandtl number is varied
from 0.1 to 1 and then to 10 to check the e�ect.

3. Results and discussions

When the modi®ed Rayleigh number is greater than

the critical value, roll cells in the xy-plane occur. Fig. 4
shows an example. The perturbed quantities w ' and y 0

are w� ÿ w�s and yÿ ys, respectively. The magnitudes

Fig. 4. Velocity and temperature pro®le of the ¯uid layer in xy-plane (Pr = 1, M = 30, Bi = 1000, a = 3.2, Ram = 1472).
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of u�, v�, w ' and y 0 are of the order of 10ÿ6 when

divided by the magnitudes of ws
� and ys: It justi®es the

simpli®cation of @pr=@z in Eq. (20). The lower part is

initially hot. Two rolls rotate in opposite directions.

The w�-velocity certainly indicates three-dimensional

feature of the ¯ow. If the modi®ed Rayleigh number is

less than its critical value, initial state �u� � v� � 0� is
maintained.

Fig. 5 shows the critical Rayleigh number and the

associated wavenumber when the Prandtl number is 1

and 10. Due to computational di�culty in conver-

gence, we do not calculate the case when the Biot

number is less than 3. These results are compared with

those of Song [9] which are based on the linear stab-
ility theory [2]. Fig. 5(a) and (b) show acr and Racr
when the Prandtl number is 1. The critical Rayleigh

number and the associated wavenumber increase with

decreasing M. Increase in M means increase in ¯ow

rate. When it is doubled in a process, the cooling load

is also doubled to maintain the same temperature

gradient. This may be realized either by increasing h

(thus, the Biot number) or by reducing T1 (at the

same Biot number). In any case, the critical Rayleigh

number changes only slightly as can be found from the

®gure. Since Ram 1 3RaM/8 from Eq. (31), Ram is

almost doubled when M is doubled. Thus, Ram may

be closer or even greater than the critical Rayleigh

number, now resulting in greater instability. The

changes of the critical Rayleigh number and the associ-

ated wavenumber from M = 30 to M = 100 are
much smaller than those from M = 20 to M = 30.

Fig. 5(c) and (d) show the critical Rayleigh number

and the associated wavenumber when the Prandtl

number is 10. The critical numbers show similar beha-

vior as when the Prandtl number is 1, however, they

are much smaller than that of Pr = 1. Interpretation
of the physical consequence requires caution, however.

If the viscosity, and thus Pr too, is reduced to 1/10

while the other parameters are the same, then we have

10 times as large modi®ed Rayleigh number (13RaM/

8). Note that the steady temperature pro®le and vel-

ocity pro®le are not altered. The critical Rayleigh num-

ber is increased to some degree but it is far below 10

times. Therefore, the modi®ed Rayleigh number is now

Fig. 5. The critical Rayleigh number and the associated wavenumber: (a) the critical wavenumber (Pr = 1), (b) the critical Ray-

leigh number (Pr = 1), (c) the critical wavenumber (Pr = 10), (d) the critical Rayleigh number (Pr = 10).
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closer to the critical Rayleigh number, which means it

is less stable. Change of thermal conductivity, on the

other hand, is more complicated. Not only Ram but

also M and Bi are inversely proportional to it. If it is

increased 10 times so that Pr changes from 10 to 1, M

and Bi are reduced to 1/10; the overall e�ect results in

decrease in the critical Rayleigh number, but not to 1/

10. Consequently, Ram (13RaM/8) becomes much

smaller than the critical Rayleigh number, making the

¯ow more stable. Increase in Pr by the above two

manipulations of ¯uid properties results in opposite

consequences in ¯ow stability. The results are in ac-

cordance with our physical intuition that greater vis-

cosity or greater thermal conductivity means greater

rigidity to the boundary values thus greater stability.

The critical numbers for Pr = 10 are almost identi-

Fig. 6. Transient responses of the u �-, v �-velocity at x � = 0.11 and y � = 0.11 (Pr = 0.1, M = 100, Bi = 10, a = 3).
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cal to the results of Song [9], as he solves the current

problem using the linear stability theory [2]. The

reason of the agreement is considered as follows: Chao

et al. [7] reaches the conclusion that convective terms

in the momentum equations �u�@u�=@x �, etc.) become

negligible compared with the viscous terms

�Pr@ 2u�=@x �2, etc.) for large Prandtl number from

their numerical simulation of Benard convection. In

this limiting case, the linear stability theory is asymp-

totically valid when the convective terms in the

momentum equations are neglected.

The critical Rayleigh number and the associated

wavenumber increase with increasing Biot number.

The two critical numbers are very sensitive to the

change in the Biot number near Bi = 1. When the

Biot number is greater than 100, the two critical num-

bers have nearly constant values. Results for large Bi

indicates that large heat transfer coe�cient at the

upper surface tends to ®x the upper surface tempera-

ture to the environment temperature, and thus, stabil-

izes the steady ¯ow. When the Biot number is less

than 0.01, the critical Rayleigh number is nearly con-

stant for even smaller Bi according to Song's results.

This case actually corresponds to constant heat ¯ux

boundary condition.

As can be seen from Fig. 2, the warm (and thus un-

stable) layer is thicker than the linear temperature pro-

®le for Ra/M < 24. From Fig. 5(d), the critical

Rayleigh number for M = 100 and Bi 31 is about

900. When we remember that the Rayleigh-instability

case shows Racr = 1101, we can ®nd that our case

shows a more unstable result.

When the modi®ed Rayleigh number is less than 650

for Bir 3 and Prr 1, the ¯uid layer is always stable
for any Pr, M and Bi. This fact is very informative in
industrial applications since below this modi®ed Ray-

leigh number, the ¯ow is steady and stable, and thus,
accurate control of ¯owing molten product is possible.
In terms of the original Rayleigh number de®ned in

Eq. (22), this condition corresponds to

RaR1733

M
: �33�

When the Prandtl number is as small as 0.1, velocities
and temperature are found to oscillate at all combi-
nations of M and Bi, and over fairly wide variation of
a. Extremely long computing time is needed to simu-

late the oscillatory motion. It is beyond practical possi-
bility to ®nd the critical Rayleigh number. So, we only
calculate a typical case �Pr � 0:1� and plot the result in

Fig. 6. If the modi®ed Rayleigh number is taken as
1385, velocities and temperature oscillate with uniform
amplitude. On the other hand, these amplitudes con-

verge to 0 or diverge to 1 when the modi®ed Rayleigh
number is less or greater than 1385 as shown in Fig. 6.
This type of bifurcation is called Hopf bifurcation.
When it occurs, the ¯ow changes from steady (u� = v�

= 0) to oscillatory behavior. Velocities u� and v�

change the ¯ow direction during the oscillation. This
means oscillatory change in cell patterns. Fig. 7 shows

u� and v� velocities during one period of time. The
dimensionless period time is 2.08. Initially, two rolls
rotate in the opposite direction with upward ¯ow at

the center and then the rolls change the direction. The
reason why oscillatory bifurcation appears with small
Prandtl number is not clear. The most we can infer is

Fig. 7. A series of instantaneous velocity vector during a period for low Prandtl number (Pr = 0.1, M = 100, Bi = 10, a = 3,

Ram = 1385).
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that the perturbed velocities exhibit fairly large inertia
for low Pr as has been reasoned by Chao et al. [7]. It

can then skip the steady bifurcation stage and directly
transfer to oscillatory motion. The concrete border of
Hopf bifurcation on the Pr, Bi and M is not found,

though.

4. Conclusion

The stability limits of longitudinal roll cells in a

steadily cooled ¯owing layer without back current are
investigated using an unsteady SIMPLER code with a
periodic boundary condition for Bi r 3. Steady two-
dimensional roll cells appear when Prr1: In this case,

the critical Rayleigh number based on the lower and
upper surface temperature di�erence and the associated
wavenumber increase with decreasing Pr, increasing Bi

and decreasing M. If the Prandtl number is greater
than 10, the two critical numbers may be obtained
using the linear stability theory as they are not depen-

dent on the Prandtl number any more. The critical
Rayleigh number has nearly uniform values when the
Biot number is greater than 100 or smaller than 0.01.

The ¯uid layer is found stable for any Pr (r1), M and
Bi (r3) when the modi®ed Rayleigh number is smaller
than 650. Hopf bifurcation is found to occur when the
Prandtl number is as small as 0.1, though the exact

regime and the critical Rayleigh number are not
obtained.
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